91²Ö¿â

91²Ö¿â Physicist Joins Inter-Institutional Research Project to Study Light-Driven Materials

91²Ö¿â continues to march in the vanguard of technological advancement. A KSU researcher has joined a cutting-edge collaborative study into light-driven materials.
The technology has the potential to replace electric motors unilaterally.
The Office of Naval Research awarded a $7.5 million Multidisciplinary University Research Initiative (MURI) grant for a five-year project led by Polymer Scientist Dr. Ryan Hayward at the University of Massachusetts – Amherst, with five other participating institutions, including KSU.
Dr. Peter Palffy-Muhoray, a physicist in the Advanced Materials and Liquid Crystal Institute (AMLCI) at 91²Ö¿â, will receive roughly $1.2 million for his part in the project.

Image
Dr. Peter Palffy-Muhoray, Physicist in 91²Ö¿â's Advanced Materials and liquid Crystal Institute

“It’s a very exciting time, because I think we’re really at the threshold of this fundamentally new technology,†Palffy-Muhoray said. “What I think is exciting here is the idea of eliminating motors and wires, and just using light directly to do work. You can shine a laser at something or use an optic fiber to guide the light,  but the idea is to use light directly to do work, and I think that that’s a big step forward in technology.â€
Palffy-Muhoray said studies show that the power generated by large electric motors could be easily transmitted through thin optical fibers.
“There are a lot of light-responsive materials out there. Liquid crystal elastomers are one such material, but not at all the only material. There are metals that undergo light-induced deformations, and there are organic crystals that change their shape when illuminated.â€â€¨Hayward has stated that the fundamental insights gained, and access to improved material properties, will put these “photomechanical materials†to use not only in smart buildings and remotely-controlled robots, but also in self-regulating optical devices like “smart lenses†or mirrors that self-adjust to maintain proper performance despite changing environmental conditions.
Hayward and Palffy-Muhoray will work with colleagues from the UC Riverside; UC Santa Barbara; Stanford University, and Cal Tech. The team will use quantum mechanical modeling to generate new classes of light-responsive moleculars, then pair them with new hosts through  self-assembly to reach large-scale material architectures.
“In the future, in some cases we may not need solar cells, but use instead new photoactive materials that do the work directly,†Palffy-Muhoray said.


Media Contacts
Emily Vincent: evincen2@kent.edu, 330-672-8595

Dan Pompili: dpompili@kent.edu, 330-672-0731

 

 

POSTED: Wednesday, October 30, 2019 12:29 PM
Updated: Thursday, December 8, 2022 09:27 AM
WRITTEN BY:
Dan Pompili